

GROUNDWATER IN GLOBAL IRRIGATED FOOD PRODUCTION - THE ROLE OF DEPLETING AQUIFERS

Karen G. Villholth^a, Aditya Sood^b, Tingju Zhu^c

^a Principal Researcher, IWMI, South Africa
^b Researcher, IWMI, Sri Lanka
^c Senior Research Staff, IFPRI, Washington DC

Objective/Research questions

- 1. How much does depleting groundwater contribute to global food production?
- 2. What is the impact of unsustainable groundwater irrigation on future global food security? Are there alternatives?

Groundwater depletion What is it?

Groundwater depletion occurs when the rate of groundwater abstraction is greater than the rate of replenishment

Fundamental groundwater balance

Natural conditions

Averaged over long term, R=D and S is constant

Stable groundwater pumping

 $\ensuremath{\mathsf{Q}_{\mathsf{net}}}$ is equivalent to reduction in D and S

Unsustainable condition

Q_{net} is greater than R, D reduces to 0 and S decreases continuosly

Development in groundwater withdrawal in selected countries

Source: Shah *et al.,* 2007

Total groundwater depletion at global scale

Slide 6

GWL decline, example from China

Hydrograph depicting water-table elevations beneath Luancheng **Agro-Ecological** Research Station (Chinese Academy of Sciences, Luancheng County, Hebei Province, 1974-2002)

Earlier Estimates of the Role of GW in Global Irrigated Food Production

- Larger than 10%, inferred from Shah *et al.* (2007)
- 40% of all cultivated land under irrigation is 'water well equipped' (Foster and Shah, 2012)
- About 10% of global **food production** depends on using **mined** GW (FAO, 2003)

Is Groundwater Depletion Linked to Food Production Decline in Recent Times?

LED BY FPR V

- <u>Saudi Arabia</u>: Between 2007 and 2010, the wheat harvest of nearly 3 mill. tons dropped by more than two thirds
- <u>Yemen</u>: the grain harvest has shrunk by one third over the last 40 years
- Similar trends in <u>USA, India, China,</u> <u>Pakistan, Mexico, Jordan, Israel,</u> <u>Afghanistan, Syria</u>

Slide 9

RESEARCH PROGRAM ON Policies, Institutions and Markets

SPAM data/map Food Production and Harvested Area mapping

PCR-GLOBWB data/map Groundwater Abstraction Groundwater Depletion

₽

FAO data/map Percentage of Irrigated Area by Groundwater

FINAL PRODUCT

Food Production and Harvested Area dependent on GW abstraction and GW depletion PRI

METHODOLOGY GIS analysis

Global Groundwater Irrigation

Percentage of 5 arc min grid cell area equipped for irrigation with groundwater out of total irrigated area

Source: Siebert et al., 2010

Global Annual Groundwater Depletion – 2000 data

Based on PCR-GLOBWB

Approach and Assumptions

- 5 minute grids as the working unit
- Only irrigated crop production considered
- 'Food production' aggregated into 11 crop groups
- Food production attributed to surface or groundwater irrigation based on share of area of each
- If depletion occurs, all GW-derived food production is from depletion
- Irrigated water divided between crops based on weighted average of harvested area and crop coefficient
- Groundwater productivity equal to surface water productivity

RESEARCH PROGRAM ON Policies, Institutions and Markets

Crop groups

FAO 2010 Crop Classification	Crop Name				
	wheat				
	rice				
	maize				
Corrola	barley				
Cereais	pearl millet				
	small millets				
	sorghum				
	other cereals				
	potatoes				
Root/tuber crops with high starch or inulin	sweet potatoes				
content	yams				
content	cassava				
	other roots and tubers				
	phaseolus beans (dry)				
	chickpeas				
Leguminous crons	cowpeas				
LeBannious crops	pigeon peas				
	lentils				
	other pulses				
	soybeans				
	groundnuts				
	coconuts				
Oilseed crops	oil palm				
	sunflower				
	rape and mustard seed				
	sesame seed				
	other oilcrops				
Sugar Crops	sugarcane				
	sugarbeet				
Fibre crops	cotton				
	other fibre crops				
	coffee Arabica				
Beverage and spice crops	coffee robusta				
	cocoa				
	tea				
Tobacco	tobacco				
	bananas				
Fruit and nuts	plantains				
	tropical fruit				
	temperate fruit				
Vegetables and melons	vegetables				

Harvested Area

	Cereals	Root	Legume	Oilseed	Sugar	Fiber	Beverag es	Tobacco	Fruit	Vegetables	Other	TOTAL
Total Irrigated Area (Mha)	138.71	3.54	7.56	19.71	10.66	14.59	0.56	0.01	6.07	0.94	0.46	202.82
Irrigated area based on GW abstraction (Mha)	46.07	1.26	2.79	9.26	3.29	5.39	0.14	0.01	2.53	0.10	0.10	70.94
Irrigated area based on GW Depletion (Mha)	11.88	0.28	0.91	2.16	0.53	1.57	0	0	0.8	0.05	0.06	18.24

Production

	Cereals	Root	Legume	Oilseed	Sugar	Fiber	Beverag es	Tobacco	Fruit	Vegetables	Other	TOTAL
Total Irrigated Production (Million Mt)	856.49	93.83	7.13	39.39	727.23	38.89	0.57	0.02	95.19	22.06	1.63	1882.4
Irrigated Production based on GW abstraction (Million Mt)	292.33	38.29	3.05	20.05	231.23	15.36	0.15	0.01	43.49	2.57	0.49	647.02
Irrigated Production based on GW Depletion (Million Mt)	68.91	8.36	0.85	3.39	31.19	4.21	0	0.01	12.94	1.58	0.31	131.76

Totals for GW irrigation contribution to total irrigated food production

	Harvested Area (%)	Crop Production (%)
Abstracted/Total Irrigated	34.97	34.37
Depleted/Abstracted	25.72	20.36
Depleted/Total Irrigated	8.99	7.00

Share of GW Abstraction and Depletion by Crop Group

Crop Group	Abstraction (%)	Depletion (%)
Beverages	0.09	0.01
Cereal	68.04	64.03
Fiber	10.61	15.50
Fruit	0.14	0.21
Legume	4.21	4.85
Oil	8.95	8.27
Rest	0.77	1.18
Root	3.20	2.05
Sugar	3.84	3.63
Tobacco	0.01	0.01
Vegetables	0.14	0.26
SUM	100	100

Global Cereal Production

LED BY IFPRIN

Groundwater Depletion for Cereals

Regional Share of Crop Production from Irrigation, per Crop Group

Regional Share of Crop Production Dependent on Depleted GW, by Crop Group

Share of each crop based on GW depletion, in terms of production, at regional level

Crop Groups	Asia	Europe	LAC	NAfrica	NAC	Oceania	Russia	SSA
Cereals	7.64	1.15	3.07	2.84	24.28	0.74	1.00	0.22
Root/tuber crops	12.29	0.36	5.55	8.49	14.98	0.00	0.86	0.02
Leguminous crops	12.14	2.10	11.46	2.06	20.37	0.00	1.09	0.13
Oilseed crops	9.73	1.34	6.14	10.39	12.95	0.00	1.08	0.08
Sugar Crops	0.01	0.32	0.39	2.45	10.89	0.00	0.15	0.11
Fiber crops	7.64	0.93	13.62	0.23	30.44	0.93	1.55	0.04
Beverage and spice crops	5.36	0.00	0.02	0.00	0.00	0.00	0.00	0.00
Tobacco	59.01	0.00	0.03	0.00	0.00	0.00	0.00	0.00
Fruit and nuts	18.96	4.14	0.51	2.72	23.42	0.00	0.00	0.00
Vegetables and melons	30.05	0.00	0.00	0.70	0.00	0.00	0.00	0.00
Other Crops	0.00	0.00	0.00	0.05	35.38	0.00	0.00	0.00

Shortcomings/further work

- Dataset for GW abstraction and depletion at 0.5 degrees, rather than at 5 minutes
- GW irrigation areas probably underestimated => GW depletion contribution to global food production may be underestimated
- GW depletion data from 2000 => GW depletion contribution to global food production may be underestimated
- Correct for higher productivity of GW

Further work

 Global hydro-economic/food production models assume infinite physical GW storage. Modification is needed to build/test realistic scenarios for future alternatives for curtailing/optimizing GW abstraction and keeping up food production

Conclusions

- 34 % of global irrigated food production derives from GW irrigation
- 7 % of global irrigated food production derives from depleting groundwater
- 20 % of all GW-based food production is based on unsustainable abstraction
- Asia is responsible for the largest share of food production from depleting groundwater
- Cereals and sugar are the GW-irrigated crops most widely grown unsustainably, in terms production
- Results imply the critical importance of analysing and developing congruent policies at multiple levels that account for the nexus between groundwater and food security

Acknowledgement

- Dr. Rens van Beek, Geosciences, Univ. of Utrecht, PCR-GLOBWB model groundwater data set
- Ulrike Wood-Sichra, IFPRI, SPAM data set

Brown, L.R., 2011. World on the Edge: How to Prevent Environmental and Economic Collapse, Earth Policy Institute. W.W. Norton and Company. ISBN: 978-0-393-33949-9.

FAO, 2003. The Irrigation Challenge. IIPTRID Issue Paper 4. Sep. 2003.

Foster, S. and T. Shah, 2012. Groundwater Resources and Irrigated Agriculture – making a beneficial relation more sustainable. Perspectives Paper. Global Warter Partnership.

Morris, B.L., A.R.L. Lawrence, P.J.C. Chilton, B. Adams, R.C. Calow, B.A. Klinck, B A., 2003. Groundwater and its Susceptibility to Degradation: A Global Assessment of the Problem and Options for Management. Early Warning and Assessment Report Series, RS. 03-3. United Nations Environment Programme, Nairobi, Kenya.

Shah, T., J.J. Burke, and K.G. Villholth, 2007. Groundwater: a global assessment of scale and significance. Chapter 10, 395-423. In: D. Molden (Ed.): Water for Food, Water for Life. Comprehensive Assessment of Water Management in Agriculture Synthesis Report. Earthscan. ISBN: 978-1-84407-396-2.

Siebert, S., J. Burke, J.M. Faures, K. Frenken, J. Hoogeveen, P. Döll, and F.T. Portmann, 2010. Groundwater use for irrigation - a global inventory. Hydrol. Earth Syst. Sci., 14, 1863-1880. doi:10.5194/hess-14-1863-2010.

Wada,Y., L.P.H. van Beek, and M.F.P. Bierkens, 2012. Nonsustainable groundwater sustaining irrigation: A global assessment. Wat. Res. Resear., 48, W00L06, doi:10.1029/2011WR010562.

THANK YOU !!

